Extensions 1→N→G→Q→1 with N=C23 and Q=C2xDic5

Direct product G=NxQ with N=C23 and Q=C2xDic5
dρLabelID
C24xDic5320C2^4xDic5320,1626

Semidirect products G=N:Q with N=C23 and Q=C2xDic5
extensionφ:Q→Aut NdρLabelID
C23:1(C2xDic5) = C2xC23:Dic5φ: C2xDic5/C10C4 ⊆ Aut C2380C2^3:1(C2xDic5)320,846
C23:2(C2xDic5) = C24.18D10φ: C2xDic5/C10C22 ⊆ Aut C23160C2^3:2(C2xDic5)320,847
C23:3(C2xDic5) = C24.38D10φ: C2xDic5/C10C22 ⊆ Aut C2380C2^3:3(C2xDic5)320,1470
C23:4(C2xDic5) = C2xD4xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C23160C2^3:4(C2xDic5)320,1467
C23:5(C2xDic5) = C22xC23.D5φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3:5(C2xDic5)320,1511

Non-split extensions G=N.Q with N=C23 and Q=C2xDic5
extensionφ:Q→Aut NdρLabelID
C23.1(C2xDic5) = C24:2Dic5φ: C2xDic5/C10C4 ⊆ Aut C23404C2^3.1(C2xDic5)320,94
C23.2(C2xDic5) = (C22xC20):C4φ: C2xDic5/C10C4 ⊆ Aut C23804C2^3.2(C2xDic5)320,97
C23.3(C2xDic5) = (D4xC10).29C4φ: C2xDic5/C10C4 ⊆ Aut C23804C2^3.3(C2xDic5)320,864
C23.4(C2xDic5) = (D4xC10):22C4φ: C2xDic5/C10C4 ⊆ Aut C23804C2^3.4(C2xDic5)320,867
C23.5(C2xDic5) = C24.2D10φ: C2xDic5/C10C22 ⊆ Aut C2380C2^3.5(C2xDic5)320,85
C23.6(C2xDic5) = C20.60(C4:C4)φ: C2xDic5/C10C22 ⊆ Aut C23804C2^3.6(C2xDic5)320,91
C23.7(C2xDic5) = C24.8D10φ: C2xDic5/C10C22 ⊆ Aut C23160C2^3.7(C2xDic5)320,578
C23.8(C2xDic5) = C42.187D10φ: C2xDic5/C10C22 ⊆ Aut C23160C2^3.8(C2xDic5)320,627
C23.9(C2xDic5) = C20:7M4(2)φ: C2xDic5/C10C22 ⊆ Aut C23160C2^3.9(C2xDic5)320,639
C23.10(C2xDic5) = C24.19D10φ: C2xDic5/C10C22 ⊆ Aut C23160C2^3.10(C2xDic5)320,848
C23.11(C2xDic5) = C20.76C24φ: C2xDic5/C10C22 ⊆ Aut C23804C2^3.11(C2xDic5)320,1491
C23.12(C2xDic5) = C22:C4xDic5φ: C2xDic5/Dic5C2 ⊆ Aut C23160C2^3.12(C2xDic5)320,568
C23.13(C2xDic5) = C24.47D10φ: C2xDic5/Dic5C2 ⊆ Aut C23160C2^3.13(C2xDic5)320,577
C23.14(C2xDic5) = C20.35C42φ: C2xDic5/Dic5C2 ⊆ Aut C23160C2^3.14(C2xDic5)320,624
C23.15(C2xDic5) = C42.43D10φ: C2xDic5/Dic5C2 ⊆ Aut C23160C2^3.15(C2xDic5)320,626
C23.16(C2xDic5) = D4xC5:2C8φ: C2xDic5/Dic5C2 ⊆ Aut C23160C2^3.16(C2xDic5)320,637
C23.17(C2xDic5) = C42.47D10φ: C2xDic5/Dic5C2 ⊆ Aut C23160C2^3.17(C2xDic5)320,638
C23.18(C2xDic5) = (D4xC10).24C4φ: C2xDic5/Dic5C2 ⊆ Aut C23160C2^3.18(C2xDic5)320,861
C23.19(C2xDic5) = C2xD4.Dic5φ: C2xDic5/Dic5C2 ⊆ Aut C23160C2^3.19(C2xDic5)320,1490
C23.20(C2xDic5) = C24.Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2380C2^3.20(C2xDic5)320,83
C23.21(C2xDic5) = C24.D10φ: C2xDic5/C2xC10C2 ⊆ Aut C2380C2^3.21(C2xDic5)320,84
C23.22(C2xDic5) = (C2xC20):C8φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.22(C2xDic5)320,86
C23.23(C2xDic5) = (C2xC20).Q8φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.23(C2xDic5)320,88
C23.24(C2xDic5) = C4xC4.Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.24(C2xDic5)320,549
C23.25(C2xDic5) = C20:13M4(2)φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.25(C2xDic5)320,551
C23.26(C2xDic5) = C42.6Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.26(C2xDic5)320,552
C23.27(C2xDic5) = C42.7Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.27(C2xDic5)320,553
C23.28(C2xDic5) = C24.4Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C2380C2^3.28(C2xDic5)320,834
C23.29(C2xDic5) = C4xC23.D5φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.29(C2xDic5)320,836
C23.30(C2xDic5) = C24.63D10φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.30(C2xDic5)320,838
C23.31(C2xDic5) = C24.64D10φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.31(C2xDic5)320,839
C23.32(C2xDic5) = C2xC20.D4φ: C2xDic5/C2xC10C2 ⊆ Aut C2380C2^3.32(C2xDic5)320,843
C23.33(C2xDic5) = C2xC20.10D4φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.33(C2xDic5)320,853
C23.34(C2xDic5) = C25.2D5φ: C2xDic5/C2xC10C2 ⊆ Aut C2380C2^3.34(C2xDic5)320,874
C23.35(C2xDic5) = C22xC4.Dic5φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.35(C2xDic5)320,1453
C23.36(C2xDic5) = C2xC23.21D10φ: C2xDic5/C2xC10C2 ⊆ Aut C23160C2^3.36(C2xDic5)320,1458
C23.37(C2xDic5) = (C2xC20):8C8central extension (φ=1)320C2^3.37(C2xDic5)320,82
C23.38(C2xDic5) = C2xC4xC5:2C8central extension (φ=1)320C2^3.38(C2xDic5)320,547
C23.39(C2xDic5) = C2xC42.D5central extension (φ=1)320C2^3.39(C2xDic5)320,548
C23.40(C2xDic5) = C2xC20:3C8central extension (φ=1)320C2^3.40(C2xDic5)320,550
C23.41(C2xDic5) = C2xC20.55D4central extension (φ=1)160C2^3.41(C2xDic5)320,833
C23.42(C2xDic5) = C2xC10.10C42central extension (φ=1)320C2^3.42(C2xDic5)320,835
C23.43(C2xDic5) = C23xC5:2C8central extension (φ=1)320C2^3.43(C2xDic5)320,1452
C23.44(C2xDic5) = C22xC4xDic5central extension (φ=1)320C2^3.44(C2xDic5)320,1454
C23.45(C2xDic5) = C22xC4:Dic5central extension (φ=1)320C2^3.45(C2xDic5)320,1457

׿
x
:
Z
F
o
wr
Q
<