extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(C2xDic5) = C24:2Dic5 | φ: C2xDic5/C10 → C4 ⊆ Aut C23 | 40 | 4 | C2^3.1(C2xDic5) | 320,94 |
C23.2(C2xDic5) = (C22xC20):C4 | φ: C2xDic5/C10 → C4 ⊆ Aut C23 | 80 | 4 | C2^3.2(C2xDic5) | 320,97 |
C23.3(C2xDic5) = (D4xC10).29C4 | φ: C2xDic5/C10 → C4 ⊆ Aut C23 | 80 | 4 | C2^3.3(C2xDic5) | 320,864 |
C23.4(C2xDic5) = (D4xC10):22C4 | φ: C2xDic5/C10 → C4 ⊆ Aut C23 | 80 | 4 | C2^3.4(C2xDic5) | 320,867 |
C23.5(C2xDic5) = C24.2D10 | φ: C2xDic5/C10 → C22 ⊆ Aut C23 | 80 | | C2^3.5(C2xDic5) | 320,85 |
C23.6(C2xDic5) = C20.60(C4:C4) | φ: C2xDic5/C10 → C22 ⊆ Aut C23 | 80 | 4 | C2^3.6(C2xDic5) | 320,91 |
C23.7(C2xDic5) = C24.8D10 | φ: C2xDic5/C10 → C22 ⊆ Aut C23 | 160 | | C2^3.7(C2xDic5) | 320,578 |
C23.8(C2xDic5) = C42.187D10 | φ: C2xDic5/C10 → C22 ⊆ Aut C23 | 160 | | C2^3.8(C2xDic5) | 320,627 |
C23.9(C2xDic5) = C20:7M4(2) | φ: C2xDic5/C10 → C22 ⊆ Aut C23 | 160 | | C2^3.9(C2xDic5) | 320,639 |
C23.10(C2xDic5) = C24.19D10 | φ: C2xDic5/C10 → C22 ⊆ Aut C23 | 160 | | C2^3.10(C2xDic5) | 320,848 |
C23.11(C2xDic5) = C20.76C24 | φ: C2xDic5/C10 → C22 ⊆ Aut C23 | 80 | 4 | C2^3.11(C2xDic5) | 320,1491 |
C23.12(C2xDic5) = C22:C4xDic5 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C23 | 160 | | C2^3.12(C2xDic5) | 320,568 |
C23.13(C2xDic5) = C24.47D10 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C23 | 160 | | C2^3.13(C2xDic5) | 320,577 |
C23.14(C2xDic5) = C20.35C42 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C23 | 160 | | C2^3.14(C2xDic5) | 320,624 |
C23.15(C2xDic5) = C42.43D10 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C23 | 160 | | C2^3.15(C2xDic5) | 320,626 |
C23.16(C2xDic5) = D4xC5:2C8 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C23 | 160 | | C2^3.16(C2xDic5) | 320,637 |
C23.17(C2xDic5) = C42.47D10 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C23 | 160 | | C2^3.17(C2xDic5) | 320,638 |
C23.18(C2xDic5) = (D4xC10).24C4 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C23 | 160 | | C2^3.18(C2xDic5) | 320,861 |
C23.19(C2xDic5) = C2xD4.Dic5 | φ: C2xDic5/Dic5 → C2 ⊆ Aut C23 | 160 | | C2^3.19(C2xDic5) | 320,1490 |
C23.20(C2xDic5) = C24.Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 80 | | C2^3.20(C2xDic5) | 320,83 |
C23.21(C2xDic5) = C24.D10 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 80 | | C2^3.21(C2xDic5) | 320,84 |
C23.22(C2xDic5) = (C2xC20):C8 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.22(C2xDic5) | 320,86 |
C23.23(C2xDic5) = (C2xC20).Q8 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.23(C2xDic5) | 320,88 |
C23.24(C2xDic5) = C4xC4.Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.24(C2xDic5) | 320,549 |
C23.25(C2xDic5) = C20:13M4(2) | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.25(C2xDic5) | 320,551 |
C23.26(C2xDic5) = C42.6Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.26(C2xDic5) | 320,552 |
C23.27(C2xDic5) = C42.7Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.27(C2xDic5) | 320,553 |
C23.28(C2xDic5) = C24.4Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 80 | | C2^3.28(C2xDic5) | 320,834 |
C23.29(C2xDic5) = C4xC23.D5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.29(C2xDic5) | 320,836 |
C23.30(C2xDic5) = C24.63D10 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.30(C2xDic5) | 320,838 |
C23.31(C2xDic5) = C24.64D10 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.31(C2xDic5) | 320,839 |
C23.32(C2xDic5) = C2xC20.D4 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 80 | | C2^3.32(C2xDic5) | 320,843 |
C23.33(C2xDic5) = C2xC20.10D4 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.33(C2xDic5) | 320,853 |
C23.34(C2xDic5) = C25.2D5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 80 | | C2^3.34(C2xDic5) | 320,874 |
C23.35(C2xDic5) = C22xC4.Dic5 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.35(C2xDic5) | 320,1453 |
C23.36(C2xDic5) = C2xC23.21D10 | φ: C2xDic5/C2xC10 → C2 ⊆ Aut C23 | 160 | | C2^3.36(C2xDic5) | 320,1458 |
C23.37(C2xDic5) = (C2xC20):8C8 | central extension (φ=1) | 320 | | C2^3.37(C2xDic5) | 320,82 |
C23.38(C2xDic5) = C2xC4xC5:2C8 | central extension (φ=1) | 320 | | C2^3.38(C2xDic5) | 320,547 |
C23.39(C2xDic5) = C2xC42.D5 | central extension (φ=1) | 320 | | C2^3.39(C2xDic5) | 320,548 |
C23.40(C2xDic5) = C2xC20:3C8 | central extension (φ=1) | 320 | | C2^3.40(C2xDic5) | 320,550 |
C23.41(C2xDic5) = C2xC20.55D4 | central extension (φ=1) | 160 | | C2^3.41(C2xDic5) | 320,833 |
C23.42(C2xDic5) = C2xC10.10C42 | central extension (φ=1) | 320 | | C2^3.42(C2xDic5) | 320,835 |
C23.43(C2xDic5) = C23xC5:2C8 | central extension (φ=1) | 320 | | C2^3.43(C2xDic5) | 320,1452 |
C23.44(C2xDic5) = C22xC4xDic5 | central extension (φ=1) | 320 | | C2^3.44(C2xDic5) | 320,1454 |
C23.45(C2xDic5) = C22xC4:Dic5 | central extension (φ=1) | 320 | | C2^3.45(C2xDic5) | 320,1457 |